A recent study led by researchers at the University of Calabria and published in Antioxidants has revealed the anti-inflammatory and antioxidant properties of various parts of a bamboo plant, including its leaves and its sheaths.
The study utilised ultra-high-performance liquid chromatography (UHPLC) with a photodiode array detector (PDA-1) detector to quantify phenolic and flavonoid compounds found in bamboo sheaths and leaves.
The leaf extract demonstrated strong potential in scavenging radicals, with half-maximal inhibitory concentration (IC50) values of 3.07 in the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) and 44.32 µg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) tests.
The study found that cellular treatment with H2O2 increased reactive oxygen species (ROS) accumulation
The sheath extract showed a significant ABTS radical scavenging activity with an IC50 of 6.78 µg/mL. After 60 minutes of incubation, the activity of leaves increased while the BS and BL samples showed low ferric-reducing ability, with ferric-reducing ability of plasma (FRAP) values of 7.71 and 10.25, respectively. The bioactivity test also revealed a positive correlation between total phytochemical content and antioxidant activity.
Three bamboo species obtained in China, namely Pleioblastus amarus, Lophatherum gracile, and Phyllostachys nigra, had a lower DPPH radical scavenging potential. The IC50 values for these species ranged from 1.25 to 5.07 mg/mL for Pleioblastus amarus, 1.59 to 2.72 mg/mL for Phyllostachys nigra, and 2.10 to 10.17 mg/mL for Lophatherum gracile.
Extracts from Phyllostachys nigra leaves showed a similar ability to scavenge radicals, with IC50 values ranging from 1.79 to 32.64 mg/mL for ABTS and 2.05 to 47.90 mg/mL for DPPH.
The study found that cellular treatment with H2O2 increased reactive oxygen species (ROS) accumulation. However, using BS inhibited the production of ROS induced by H2O2 in a dose-dependent manner. This suggests BS can prevent oxidative stress damage caused by H2O2 in HepG2 cells.
Untreated M0 macrophages have low levels of monocyte chemoattractant protein-1/C-C motif chemokine ligand 2 (MCP-CCL2) and interleukin (IL)-6.
When stimulated with LPS, macrophages increase their production of MCP-1/CCL-2 and IL-6. BS and BL were found to have anti-inflammatory effects in macrophages, as they reduced inflammation at 0.1 and 0.2 mg/ml of BL and BS.